Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
New Phytol ; 241(2): 623-631, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715492

RESUMO

Information on seed persistence and seedling emergence from the soil seed bank is critical for understanding species coexistence and predicting community dynamics. However, quantifying seed persistence in the soil is challenging; thus, its association with other life-history traits is poorly known on a broad scale. Using germination phenology for 349 species in a 42-yr experiment, we quantified the persistence-emergence correlations and their associations with intrinsic regeneration traits using Bayesian phylogenetic multilevel models. We showed no trade-off between seed persistence and seedling emergence. Physically dormant seeds were more persistent but exhibited lower emergence than nondormant seeds. Monocarpic species had both higher persistence and emergence than polycarpic species. Seed mass posed a marginal proxy for persistence, while emergence almost doubled from the smallest to the largest seeds. This study challenges the traditional assumption and is the first demonstration of noncorrelation between persistence and emergence, probably owing to the complexity of regenerative strategies. Species with short persistence and low emergence would be the most vulnerable for in situ conservation. Our analyses of this unique, long-term dataset provide a strong incentive for further experimental studies and a rich data resource for future syntheses.


Assuntos
Germinação , Plântula , Teorema de Bayes , Filogenia , Sementes , Solo
3.
Plants (Basel) ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653867

RESUMO

Among the diaspores of angiosperms an inflated ovary (IO) is a novel morphological trait, but no studies have evaluated its effects on dispersal. The primary aim of this study was to determine the effect of the IO on diaspore dispersal in three cold desert species (Carex physodes, Calligonum junceum, and Sphaerophysa salsula). Various morphological features and the mass of fruits and seeds of each species were measured. The role of an IO in diaspore dispersal by wind and water was determined by comparing responses of intact (inflated) IOs and flattened fruits and seeds. Mature diaspores of three species were dispersed by wind, and the IO significantly increased dispersal distance in the field and at different wind speeds in the laboratory. The floating time on water was greater for inflated fruits than flattened fruits and seeds. Since the seed remains inside the IO until after dispersal is completed, the IO of the three species enhances diaspore dispersal. This is the first detailed study on how an IO increases diaspore/seed dispersal. Furthermore, after primary dispersal by wind, secondary dispersal can occur via wind or surface runoff of water, and each method is enhanced by the presence of an IO.

4.
Plants (Basel) ; 12(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37176851

RESUMO

The persistence of subtropical seasonally dry forests urgently requires the implementation of ex situ conservation and restoration programs. We studied variation in seed traits and dormancy of six native species growing in seasonally dry Chaco forests of Argentina. We documented high intra- and interspecific variability in seed traits and dormancy. Fresh seeds of Geoffroea decorticans and Parasenegalia visco (Fabaceae) were water-permeable and nondormant (ND), while those of Parkinsonia praecox and Vachellia aroma (Fabaceae) were water-impermeable and had physical dormancy (PY). Seeds of Schnopsis lorentzii (Anacardiaceae) and Sarcomphalus mistol (Rhamnaceae) were water-permeable and had physiological dormancy (PD). Mechanical and chemical scarification were the most effective methods to break PY, and dry storage for 3 months was effective in breaking PD. Seeds of large-seeded species were ND or had PD, and those of small-seeded species had PY. Species inhabiting moist habitats had ND seeds, whereas those from seasonally dry habitats had seeds with PY or PD. These results suggest that seed traits and dormancy are species-specific and that intraspecific variation in seed traits is likely associated with high phenotypic plasticity of species in response to local environmental heterogeneity. These findings should be considered at the time of implementation of conservation techniques and for seed sourcing decisions for restoration.

5.
Planta ; 257(6): 121, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198315

RESUMO

MAIN CONCLUSION: Differences in dispersal and dormancy of heteromorphic diaspores of Aegilos tauschii may increase its flexibility to invade/occupy weedy unpredictable habitats by spreading risk in space and time. In plant species that produce dimorphic seeds, there often is a negative relationship between dispersal and dormancy, with high dispersal-low dormancy in one morph and low dispersal-high dormancy in the other, which may function as a bet-hedging strategy that spreads the risk of survival and ensures reproductive success. However, the relationship between dispersal and dormancy and its ecological consequences in invasive annual grasses that produce heteromorphic diaspores is not well studied. We compared dispersal and dormancy responses of diaspores from the basal (proximal) to the distal position on compound spikes of Aegilops tauschii, an invasive grass with heteromorphic diaspores. Dispersal ability increased and degree of dormancy decreased as diaspore position on a spike increased from basal to distal. There was a significant positive correlation between length of awns and dispersal ability, and awn removal significantly promoted seed germination. Germination was positively correlated with GA concentration and negatively correlated with ABA concentration, and the ABA: GA ratio was high in seeds with low germination/high dormancy. Thus, there was a continuous inverse-linear relationship between diaspore dispersal ability and degree of dormancy. This negative relationship between diaspore dispersal and degree of dormancy at different positions on a spike of Aegilops tauschii may facilitate seedling survival in space and time.


Assuntos
Aegilops , Dispersão de Sementes , Poaceae , Dispersão de Sementes/fisiologia , Germinação/fisiologia , Plântula , Sementes/fisiologia , Dormência de Plantas
6.
Trends Plant Sci ; 28(4): 386-389, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801194

RESUMO

Information about smoke cues for seed germination is fundamental to understanding fire adaptation. Recently, lignin-derived syringaldehyde (SAL) was identified as a new smoke cue for seed germination, which challenges the assumption that cellulose-derived karrikins are the primary smoke cues. We highlight the overlooked association between lignin and the fire adaptation of plants.


Assuntos
Incêndios , Germinação , Lignina , Sinais (Psicologia) , Sementes , Fumaça
7.
Ecol Appl ; 33(2): e2782, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479756

RESUMO

Some research indicates that soil seed banks can promote species coexistence through storage effects. However, the seed bank mechanism that maintains plant assembly and its role in degraded grassland restoration are still not clear. We collected seed bank samples from early, mid and late secondary successional stages of an abandoned subalpine meadow on the Tibetan Plateau, and samples from each stage were exposed to full (i.e., natural), mid, and low light treatments in the field to represent light availability at the bottom/understory (soil surface) of a plant community in the early, mid and late stages of succession, respectively. Species richness, seed density, species composition, and community weighted mean values (CWMs) of seed mass of the species whose seeds germinated in soil samples were evaluated. In response to the light treatments, species richness increased significantly with increased light only for the late successional stage, seed density increased significantly with increased light only in the early and mid successional stages, and seed mass decreased significantly with increased light only in the mid and late successional stages. Species composition differed significantly among the light treatments only in the late successional stage. For the successional series, species richness and seed mass of the species that germinated increased significantly with succession only under mid and full light treatments. Seed density decreased significantly with succession in each light treatment. Species composition differed significantly between the early- and late stage and between the mid and late stage in each light treatment. Both the abiotic (light) and biotic (seed mass) factors influence seed bank recruitment to the plant community. Regeneration of small-seeded species in the seed bank was inhibited under low light in the late successional stage. The balance of stochastic and deterministic processes along a successional gradient was determined by regeneration from the seed bank depending on light intensity change. Differences in seed response to light intensity change largely determined plant community assembly. Our findings should help in the development of effective conservation and restoration strategies.


Assuntos
Ecossistema , Pradaria , Banco de Sementes , Plantas , Sementes , Solo
8.
Front Plant Sci ; 13: 1043897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388572

RESUMO

Accelerated global warming is leading to the loss of plant species diversity, and ex situ preservation of seeds is becoming an increasingly important aspect of species conservation. However, information on dormancy and germination is lacking in many endangered species. Amsonia elliptica (Apocynaceae) is the only Amsonia species native to Korea, and the South Korean Ministry of Environment has designated it Class II endangered wildlife. Nevertheless, the dormancy class and the dormancy breaking method for seeds of this species for germination are not precisely known. We identified the structure of A. elliptica seeds and the causes of dormancy, which inhibits germination. In addition, we tried to develop an effective germination promotion method by testing the wet stratified condition, which breaks dormancy, and the form of gibberellin that can replace it. Fresh seeds of A. elliptica imbibe water, but the covering layers (endosperm and seed coat) inhibit germination by mechanically restricting the embryo. Initial germination tests confirmed low embryo growth potential and physiological dormancy (PD). Restriction due to the covering layer was eliminated by seed scarification, and abnormal germination was observed. After 12 weeks of cold moist stratification at 4°C, only 12% of seeds germinated. However, 68.8% of seeds subjected to 8 weeks of warm moist stratification followed by 12 weeks of cold stratification germinated, indicating that warm stratification pretreatment before cold stratification is effective in breaking dormancy. A. elliptica seeds exhibited intermediate PD. Furthermore, 61.3% of seeds soaked in 500 mg/L GA4+7 for 14 days and incubated at 25/15°C germinated. Therefore, GA4+7 rapidly broke the dormancy of A. elliptica seeds compared with warm plus cold stratification treatment, thus providing an efficient method for seedling production.

9.
Appl Plant Sci ; 10(5): e11492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258791

RESUMO

Premise: The Campanulaceae (Lobelioideae) is the Hawaiian plant family with the most endangered and extinct species. Although seeds of Hawaiian lobelioids are desiccation tolerant, the species are exceptional (i.e., they present challenges at various stages of the conventional ex situ conservation chain) due to their generally poor seed survival at the conventional seed-banking temperature (-18°C). Both morphological dormancy (MD) and morphophysiological dormancy (MPD) have been identified in the seeds of other Hawaiian lobelioids; however, the class of dormancy and germination requirements of the Critically Endangered genus Brighamia have not yet been determined. Methods: We measured the embryonic growth in 12-week-old seeds of B. rockii and tested their germination at three temperature regimes (15/5°C, 20/10°C, and 25/15°C) in light and at 25/15°C in darkness. Results: The embryos grew prior to radicle emergence, and the seeds germinated rapidly to high percentages in all tested conditions. Discussion: Whether fresh B. rockii seeds have MD or MPD still needs to be determined; nevertheless, 12-week-old seeds germinated well in light and darkness, and thus the seeds can be used for conservation purposes. Germination in the dark suggests that the species may not form a long-lived soil seed bank in its native habitat.

10.
Ecol Evol ; 12(8): e9240, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36052295

RESUMO

Germination timing is an important determinant of survival and niche breadth of plants. The annual plant Nigella sativa occurs in diverse environments along a steep temperature gradient and thus is a suitable model for the study of germination behavior in response to temperature. We used a modeling approach to compare the germination thermal niche of seeds of nine populations of N. sativa produced in a common garden. Germination time courses were obtained by a newly developed process-based model, and thermal niche was visualized by plotting germination breadth as a function of after-ripening time. Seeds were sampled five times: immature (2 weeks before maturity), mature, and afterripened for 1, 2, and 5 months. Immature and mature seeds had a greater depth of dormancy than afterripened seeds, as estimated by lower values of high-limit temperatures (T h). Afterripening increased germination percentage, synchrony, and thermal niche breadth of all nine populations. The highest asynchrony was for immature and mature seeds, and afterripening enhanced synchrony. Based on the new graphical method, N. sativa has Type 1 nondeep physiological dormancy, and thus, the germination niche is narrow at seed maturity, leading to a delayed germination strategy that is highly dependent on thermal time accumulated during afterripening. Our findings show that there is considerable variation in the germination thermal niche among populations. Temperature regimes in the natural habitats of N. sativa have played a significant role in shaping variation in thermal niche breadth for seed germination of this annual species. The models used in our study precisely predict germination behavior and thermal niche under different environmental conditions. The germination synchrony model also can estimate germination pattern and degree of dormancy during the year, suggesting a useful method for quantification of germination strategies.

11.
Sci Total Environ ; 851(Pt 2): 158249, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028043

RESUMO

Precipitation and temperature in the subalpine region have increased dramatically in recent decades due to global warming, and human disturbances have continued to impact the vegetation in the region. Seed bank plays an important role in population recovery, but there are few studies on the synergistic effects of human disturbances and climate change on seed bank. We analyzed the synergistic effects of human disturbances and climate change on seed bank samples from 20 sites in the subalpine coniferous forest region using grazing and logging as the disturbance intensity gradient and precipitation and temperature as climate variables. The species diversity of aboveground vegetation all changed significantly (p < 0.05) with precipitation, temperature and disturbance level, while the seed bank richness and density did not. Furthermore, the species composition of the seed bank varied significantly less than that of the aboveground vegetation at different levels of disturbance (p < 0.001). Thus, seed bank showed a strong buffering capacity against the risk of local extinction caused by environmental changes that shift the species composition and diversity of aboveground vegetation. In addition, soil and litter are important influences controlling seed bank density in subalpine forests, and the results of structural equation modelling suggest that both disturbance and climate change can indirectly regulate the seed bank by changing the physicochemical properties of soil and litter. We conclude that increases in precipitation and temperature driven by climate change can buffer the negative effects of disturbances on the seed bank.


Assuntos
Mudança Climática , Florestas , Atividades Humanas , Banco de Sementes , Humanos , Solo/química , Sementes/fisiologia
12.
Front Plant Sci ; 13: 916451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991416

RESUMO

Seed position - dependent effects on seed dormancy/germination are well documented at the inflorescence/infructescence level, but less is known about seeds at different positions within a dispersal unit. For the invasive winter annual grass Aegilops tauschii, we quantified morphology, mass and dormancy/germination of seeds from basal (1), middle (2), and distal (3) positions in two spikelet types (Left and Right). We also investigated seedling emergence, survival, plant size and seed production of plants from seeds in different spikelet positions of two spikelet types under different soil nutrient and water conditions. We found that these seed, seedling and plant traits performed as mirror images between the Left and Right spikelet types. The middle seed was significantly the longest and had the maximum mass, while the basal seed was the shortest and had medium mass. Middle seeds had the highest increase in mass during imbibition and the highest germination percentages and rates, while basal seeds had the lowest. Seedling emergence and survival, plant size and seed production for each position of seeds were highest in the added fertilizer combined with regular watering treatment and lowest in the no fertilizer combined with natural moisture, while height of plants derived from the middle and the distal seeds was significantly higher than that of plants derived from the basal seeds under all soil nutrient and water conditions. Seedling survival, number of tillers per plant and seed production per plant from the middle and distal seeds were significantly lower than those from basal seeds under all soil nutrient and water treatments. The considerable variation in seedling emergence and survival, plant size and seed production between seeds in different positions in the spikelet results in much flexibility in all stages of the life cycle, thereby likely contributing to the invasiveness of A. tauschii.

13.
Plants (Basel) ; 11(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35807640

RESUMO

To understand how light intensity influences plant morphology and photosynthesis in the forage crop alfalfa (Medicago sativa L. cv. Zhongmu 1), we investigated changes in leaf angle orientation, chlorophyll fluorescence, parameters of photosynthesis and expression of genes related to enzymes involved in photosynthesis, the Calvin cycle and carbon metabolism in alfalfa seedlings exposed to five light intensities (100, 200, 300, 400 and 500 µmol m-2 s-1) under hydroponic conditions. Seedlings grown under low light intensities had significantly increased plant height, leaf hyponasty, specific leaf area, photosynthetic pigments, leaf nitrogen content and maximal PSII quantum yield, but the increased light-capturing capacity generated a carbon resource cost (e.g., decreased carbohydrates and biomass accumulation). Increased light intensity significantly improved leaf orientation toward the sun and upregulated the genes for Calvin cycle enzymes, thereby increasing photosynthetic capacity. Furthermore, high light (400 and 500 µmol m-2 s-1) significantly enhanced carbohydrate accumulation, accompanied by gene upregulation and increased activity of sucrose and starch-synthesis-related enzymes and those involved in carbon metabolism. Together, these results advance our understanding of morphological and physiological regulation in shade avoidance in alfalfa, which would guide the identification of suitable spatial planting patterns in the agricultural system.

14.
Sci Total Environ ; 838(Pt 4): 156531, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688232

RESUMO

Seed mass (SM) is a core functional trait of plant species. Thus, information of the effect of grazing and nitrogen addition on the occurrence of species with different SMs can help us understand the influence of grazing and fertilization on survival of species and community assembly. In alpine meadows with different grazing and nitrogen addition treatments on the eastern Tibet Plateau, we measured SM and plant height (H) of the most common plants and conducted a series of quadrat surveys. Overall, grazing promoted survival of small-seeded species, while fertilization suppressed their survival. At the community level, moderate grazing reduced the average community weighted mean (CWM) of SM and increased the coefficient of variation (CV) of SM. However, there was no significant difference between the functional diversity (FDrao, calculated as Rao's index) of SM in grazed and nongrazed meadows. Nitrogen addition significantly increased the CWM of SM, had a marginally significant effect on FDrao of SM, but had no significant effect on CV of SM. The impact of gazing and fertilization on occurrence of species with different SMs can be explained by their effect on vegetation height. From the perspective of SM selection, our study helps clarify the mechanism of species diversity loss due to fertilization, and that of species diversity increase by moderate grazing.


Assuntos
Pradaria , Nitrogênio , Ecossistema , Plantas , Sementes , Solo , Tibet
15.
Plants (Basel) ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684225

RESUMO

We compared seed set, mass, and dormancy/germination of seeds from flowers at three points on the style-length continuum [long (LS), intermediate (IS), and short (SS) styles] in Ixiolirion songaricum. The effects of open and hand pollination (self and cross with pollen from upper and lower-level stamens) on seed set, mass, and dormancy/germination were assessed. Most freshly-matured seeds from LS, IS, and SS flowers were dormant, and dormancy was broken under laboratory and field conditions. After-ripened seeds from LS and IS flowers germinated to significantly higher percentages than those from SS flowers. In all pollination treatments, seed set and mass were significantly higher for LS and IS than for SS flowers. Seed set, mass, and germination for LS, IS, and SS flowers were significantly higher in open-pollinated and in cross-pollinated with pollen from upper and lower-level stamens than in self-pollination with pollen from upper- and lower-level stamens. These differences in offspring reproductive traits may be adaptive for I. songaricum in its rainfall-unpredictable environment. This is the first study to demonstrate the association between style length and germination in a species with continuous variation in style length.

16.
New Phytol ; 234(5): 1770-1781, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35292965

RESUMO

Seed dormancy is an important life history state that increases survival and fitness of seed plants, and thus it has attracted much attention. However, global biogeography, effects of paleoenvironment, evolutionary roles of dormancy transitions, and differences in adaptations of seed dormancy between life-forms are poorly understood. We compiled global distribution records for seed dormancy of 12 743 species and their phylogeny to explore the biogeographic patterns, environmental drivers, and evolutionary transitions between seed dormancy and nondormancy. Biogeographic patterns reveal a low proportion of dormancy in tropical rainforest regions and arctic regions and a high proportion of dormancy in remaining tropical, subtropical, and temperate regions for all species and woody species. Herbaceous plants show a greater proportion of dormancy in most global regions except arctic regions. Seasonal environments have a consistent positive influence on the dormancy pattern for both life-forms, but precipitation and temperature were important driving factors for woody and herbaceous plants, respectively. Seed dormancy was the dominating state during the evolutionary history of seed plants, and dormancy transitions had a significant relationship with paleotemperatures. Dormancy and nondormancy transitions in response to fluctuating environments during long-term evolutionary history may have played important roles in the diversification of seed plants. Our results add to the current knowledge about seed dormancy from macro-adaptive perspectives and the potential adaptive mechanisms of seed plants.


Assuntos
Dormência de Plantas , Sementes , Aclimatação , Evolução Biológica , Germinação , Dormência de Plantas/fisiologia , Plantas , Floresta Úmida , Sementes/fisiologia
17.
Sci Rep ; 12(1): 63, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996929

RESUMO

Seed dispersal has received much research attention. The plant canopy can intercept diaspores, but the effect of the plant canopy (the aboveground portion of a plant consisting of branches and leaves) on dispersal distance has not been explored empirically. To determine the effect of plant canopy on seed dispersal distance, a comparison of diaspores falling through open air and through plant canopy was made in a wind tunnel using three wind speeds and diaspores with various traits. Compared with diaspores falling through open air, the dispersal distance of diaspores falling through plant canopy was decreased or increased, depending on wind speed and diaspore traits. When falling through a plant canopy, dispersal distance of diaspores with thorns or those without appendages was promoted at low wind speed (2 m s-1), while that of diaspores with low wing loading (0.5 mg mm-2) and terminal velocity (2.5 m s-1) was promoted by relatively high (6 m s-1) wind speed. A plant canopy could increase seed dispersal distance, which may be due to the complicated updraft generated by canopy. The effect of maternal plants on seed dispersal regulates the distribution pattern and the species composition of the community.


Assuntos
Componentes Aéreos da Planta/crescimento & desenvolvimento , Dispersão de Sementes , Sementes/crescimento & desenvolvimento , Vento , Movimento (Física) , Folhas de Planta/crescimento & desenvolvimento , Fatores de Tempo
18.
BMC Plant Biol ; 21(1): 603, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922450

RESUMO

BACKGROUND: Seeds of Paeonia ostii have been proposed as a source of raw material for the production of edible oil; however, lack of information about the developmental biology of the seeds hampers our ability to use them. Our aim was to investigate development of the seed coat, endosperm and embryo of P. ostii in relation to timing of accumulation of nutrient reserves from pollination to seed maturity. Ovules and developing seeds of P. ostii were collected at various stages of development from zygote to maturity. Seed fresh mass, dry mass, germination, moisture, soluble sugars, starch, protein and oil content were determined. Ontogeny of seeds including embryo, endosperm and seed coat were analyzed histologically. RESULTS: The ovule of P. ostii is anatropous, crassinucellate and bitegmic. The zygote begins to divide at about 5 days after pollination (DAP), and the division is not accompanied by cell wall formation. By 25 DAP, the proembryo begins to cellularize. Thereafter, several embryo primordia appear at the surface of the cellularized proembryo, but only one matures. Endosperm development follows the typical nuclear type. The seed coat is derived from the outer integument. During seed development, soluble sugars, starch and crude fat content increased and then decreased, with maximum contents at 60, 80 and 100 DAP, respectively. Protein content was relatively low compared with soluble sugars and crude fat, but it increased throughout seed development. CONCLUSIONS: During seed development in P. ostii, the seed coat acts as a temporary storage tissue. Embryo development of P. ostii can be divided into two stages: a coenocytic proembryo from zygote (n + n) that degenerates and a somatic embryo from peripheral cells of the proembryo (2n → 2n). This pattern of embryogeny differs from that of all other angiosperms, but it is similar to that of gymnosperms.


Assuntos
Paeonia/embriologia , Sementes/crescimento & desenvolvimento , Gorduras/metabolismo , Germinação , Paeonia/anatomia & histologia , Desenvolvimento Vegetal , Sementes/anatomia & histologia , Amido/metabolismo , Açúcares/metabolismo
19.
Nat Commun ; 12(1): 7023, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857747

RESUMO

Soil seed banks represent a critical but hidden stock for potential future plant diversity on Earth. Here we compiled and analyzed a global dataset consisting of 15,698 records of species diversity and density for soil seed banks in natural plant communities worldwide to quantify their environmental determinants and global patterns. Random forest models showed that absolute latitude was an important predictor for diversity of soil seed banks. Further, climate and soil were the major determinants of seed bank diversity, while net primary productivity and soil characteristics were the main predictors of seed bank density. Moreover, global mapping revealed clear spatial patterns for soil seed banks worldwide; for instance, low densities may render currently species-rich low latitude biomes (such as tropical rain-forests) less resilient to major disturbances. Our assessment provides quantitative evidence of how environmental conditions shape the distribution of soil seed banks, which enables a more accurate prediction of the resilience and vulnerabilities of plant communities and biomes under global changes.


Assuntos
Biodiversidade , Modelos Estatísticos , Dispersão Vegetal/fisiologia , Sementes/fisiologia , Altitude , Bases de Dados Factuais , Ecossistema , Plantas/classificação , Banco de Sementes , Sementes/classificação , Solo
20.
Biology (Basel) ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440013

RESUMO

Interannual seasonal variability in precipitation may strongly affect the life history and growth of desert annual plants. We compared the effects of dry and wet springs and dry and wet autumns on growth and F2 seed dormancy of plants from spring (SG)- and autumn (AG)-germinated seeds of the cold desert annual Erodium oxyrhinchum. Vegetative and reproductive growth and F2 seed dormancy and germination were monitored from September 2016 to November 2020 in the sandy Gurbantunggut Desert in NW China in Central Asia. Dry autumns decreased the density of AG plants, and dry springs decreased the density of SG plants and growth of SG and AG plants. In dry springs, SG plants were more sensitive to precipitation than AG plants, while in wet springs SG and AG plants had similar responses to precipitation. During growth in both dry and wet springs, most morphological characters of SG and AG plants initially increased rapidly in size/number and then plateaued or decreased, except for SG plants in dry springs. In dry springs, most morphological characters of AG plants were larger or more numerous than those of SG plants, and they were larger/more numerous for SG plants in wet than in dry springs. The percentage biomass allocated to reproduction in SG plants was slightly higher in a wet than in a dry spring. A much higher proportion of dormant seeds was produced by AG plants in a wet spring than in a dry spring. Projected changes in precipitation due to climate change in NW China are not likely to have much of an effect on the biology of this common desert annual plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...